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To solve the problem of space debris, a film capture pocket system is designed in this paper. The film capture 
pocket is more flexible and reliable, compared with the space rope net. The film capture pocket system 
contains many flexible structures that are prone to large deformation and vibration during movement. 
The deformation causes large disturbances to the service spacecraft. It is necessary to establish an 
accurate rigid-flexible coupling dynamic model for quantitative analysis of disturbances. First, a film 
dynamic model is developed using high-order absolute nodal coordinate formulation. Second, an attitude 
tracking control law is designed by using the fast nonsingular terminal sliding mode controller and fixed 
time dilation observer (FxESO). Finally, combining dynamics and control principles, a virtual prototype of 
spacecraft with film capture pocket system is established. The simulation results show that higher-order 
absolute nodal coordinate formulation elements have better convergence, compared to ABAQUS finite 
element analysis. Meanwhile, the dynamic model simulates the deformation and vibration states of large 
flexible structures, during the spacecraft maneuver. The FxESO can estimate and compensate the complex 
disturbance. The error under fast nonsingular terminal sliding mode + FxESO control law converge more 
rapidly than the nonsingular terminal sliding mode + expansion observer control law. The final spacecraft 
attitude tracking error is about 10−4, indicating the effectiveness of the controller.

Introduction

With the human space activities increasing, the space envi-
ronment problems are becoming more and more serious [1]. 
Flexible capture technology represented by space rope net is 
considered as a promising space debris active removal technol-
ogy [2]. There are many advantages of traditional rope net cap-
ture system, such as simple structure, light weight, large capture 
envelope, and high error tolerance of capture control. However, 
the shape of the net surface is difficult to maintain for a long 
time as shown in Fig. 1. If the rope net is not unfolded at the 
proper angle and speed, the net will be difficult to fully deploy, 
and the capture area of the rope net will be reduced. During the 
unfolding process of the rope net, there is no regular net surface 
pattern, and there is constant contact friction between multiple 
ropes. Because of the contact friction between the ropes, the 
rope net system is prone to self-tangling, as shown in Fig. 2. The 
self-tangling of the rope net causes the loss of kinetic energy in 
the unfolding process, which prevents the rope net from unfold-
ing or reduces the retention time of the rope net in the effective 
capture domain. The film surface can be folded and unfolded 
along the creases, and the unfolding process has a regular shape. 
Therefore, the film surfaces are not prone to self-tangling. In 
this paper, a capture pocket system with film surfaces as the 
main structure is proposed. The system is an umbrella shaped 
structure, which consists 8 film surfaces as the main structure 

and 8 large flexible rods as supporting structure. The size of the 
target captured by the film capture pocket system is not limited 
by the net diameter, so the system is more suitable for capturing 
mall-sized and multiple targets. In this paper, the dynamic mod-
eling and attitude control of film pocket capture system are 
studied.

The film pocket capture system is a multiflexible body system. 
In the multibody system, the large range movement of the rigid 
spacecraft is coupled with the large nonlinear deformation of the 
flexible capture device. The classical finite element method is gen-
erally under the small deformation assumption to derive the ref-
erence equations in floating coordinates, so the equations are only 
suitable for small deformation cases. According to the generalized 
coordinates, the kinematic description methods used for large 
rotation and deformation systems mainly include absolute nodal 
coordinate formulation (ANCF) [3,4], geometrically exact method 
(GME) [5,6], iso-geometric analysis (IGA) [7,8], etc. The GME 
method uses node displacement vectors and rotation parameters 
as generalized coordinates. Compared with the ANCF, the GME 
method requires a rational parameterization to describe finite 
rotations to avoid singularities in the rotation parameters. In addi-
tion, the GME method interpolates the displacement and rotation 
fields separately, resulting in 2 different geometric shapes of spatial 
curves and different rigid body displacements. Some studies [9,10] 
also point out that for large deformation problems, rotation angle 
interpolation will reduce the accuracy of strain energy and inertial 
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The working process of the system is mainly in 3 stages, as 
shown in Fig. 4. First, the spacecraft system is driven by the 
high thrust engine to approach the captured target. Then, inflat-
able flexible joints are inflated to envelop the target. Finally, the 
service spacecraft actively maneuvers to drag the captured tar-
get into the graveyard orbit.

Dynamics of the spacecraft with film capture  
pocket system

Dynamics of the film surfaces
Kinematics of the film surface

Both the ANCF method and the IGA method discard the use 
of node angles as generalized coordinates, which can avoid the 
difficulties of finite rotation parameterization and interpolation 
in the GME method. However, for the IGA method, the control 
points are always not within the element. The shape of the film 
surface in the capture structure is relatively regular, and there 
are many constraints between the film surface and the flexible 
rod. Therefore, the ANCF method is more suitable for the mod-
eling analysis in this article. The kinematics of the film surface 
is described using ANCF, as shown in Fig. 5. Each high-order 
ANCF element is composed of 8 nodes. The element has 24 
node coordinate vectors and 72 degrees of freedom. The global 
vector ri of a material point n = [xi yi zi]T in the shell element 
i is defined as:

where rim
(
xi, yi

)
 is the global position vector in the middle 

surface. The interpolation representation of the global position 
vector ri using polynomials is as follows:

where Φi(x, y) = ai0 + ai1x
i + ai2y

i + ai3x
iyi + ai4x

i2 + ai5y
i2 +  

ai6 x
i2yi + ai7x

iyi2 is a interpolation polynomial with the highest 
degree term of 3.

The element nodal coordinate vector ei is defined as

where eip represents the position coordinates of element nodes. 
For node k (k = 1, 2, …, 8) in shell element i, the definitions 
are

eipz and eipz are the gradient vectors, defined as eikpz = �eik∕�zi 
and eikpzz = �eik∕�zi2.

The shape function matrix Si(xi, yi, zi) is defined as

(1)ri = rim
(
xi, yi

)
+ zi

�ri

�zi

(
xi, yi

)
+

1

2
zi2

�ri
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(
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)
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(3)ei =

[(
eip

)T (
eipz

)T (
eipzz

)T
]T

(4)eip =
[
ei1p

T ei2p
T ei3p

T ei4p
T ei5p

T ei6p
T ei7p

T ei8p
T
]T

(5)Si =
[
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(
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)
ziSim

(
xi, yi

)
0.5zi2Sim

(
xi, yi

)]

Fig. 5. Kinematics of ANCF element.
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where ξi = 2xi/li, ηi = 2yi/wi, and li and wi are the length of the 
film element along the xi and yi axes.

Refer to the research of Yamashita et al. [24] , the Green–
Lagrange strain tensor �i of a material point n in element i is 
defined as follows:

where Ji is the global position vector gradient tensor. Using the 
initial configuration as the reference configuration, the global 
coordinates X i under the reference configuration satisfies 
X i = ri

(
xi
0
, yi

0
, zi

0
, t = 0

)
 .Then, Ji can be written as follows:

Then, �i can be written as follows:

where �̂i = 1

2

(
J̃
T
J̃ − J

T
J
)

 is the covariant strain tensor.
�
i
v is a symmetric matrix with 6 variables, �ixx �iyy � ixy �izz � ixz � iyz. 

The engineering strain vector about �iv can be defined as follows:

Equations of element motion
According to the principle of virtual work in dynamics, the 
generalized elastic force virtual work can be written as

where Qi
e = − ||J||∫V0

(
E�iv

)T ��iv
�ei

dV0 is the generalized elastic 
force vector, V0 is the reference configuration volume, Ee is the 

matrix of elastic coefficients, and, for anisotropic linearly elastic 
material, Ee is defined as follows

where G =
E

2(1+�)
  is called the shear modulus, E is Young’s mod-

ulus, and ν is Poisson’s ratio.
The generalized inertial force virtual work can be written as

where Qi
I
=Mëi is the generalized inertial force vector, 

M = �0
||J||∫Vi

0
SiTSi dVi

0
 is the generalized mass matrix, and 

ρ0 is the material density at the reference configuration 
evaluated.

The generalized external force virtual work can be writ-
ten as

where Qi
f
= ||J||∫Vi

0

(
�ri

�ei

)T
F idVi

0 is the generalized external 

force vector and Fi is the external force.
On the basis of Eqs. 14, 16, and 17, the equations of the 

element i can be expressed as

Finally, the equation of the element i is derived as

Attitude dynamics of spacecraft system
The attitude dynamic equation of the spacecraft with external 
disturbances d can be expressed as follows [25]

where u is the controller of the spacecraft, ω is angular veloc-
ity, and (⋅)∗ means (⋅)×. The unit quaternion q =

[
q0 q̃T

]T 
corresponds to the body frame attitude of the spacecraft. q0 is 

(6)Sim =
[
Si1I Si2I Si3I Si4I Si5I Si6I Si7I Si8I

]

(7)

(8)�
i =

1

2
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)
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)
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0
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0
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−1
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]
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i(t) Size
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]
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i
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=
1

2
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)−1
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where ι1 = (2 − α2)ψ
α

2
−1, ι1 = (α2−1) ��2−1.5.

Proof:
Taking the Lyapunov function V as follows:

The derivative of V can be derived as follows:

When S = 0, the Eq. 24 can be derived as follows:

According to Eqs. 22 and 28, V̇  can be further derived as 
follows:

On the basis of [27], it can be proved that

Then, V̇  is written as follows:

Then, it can be proved that q̃e = 0,�e = 0, and qe0 = ± 1, 
within the limited time t0 → T0.

Design of the fixed time extended state observer
According to Eq. 24, the derivative of SF can be written as:

Considering the uncertainty of spacecraft inertia with film 
bag capture system, the spacecraft inertia can be written as 
JR = JR0 + ΔJR, where JR0 is the known inertia matrix and ΔJR is 
the uncertainty inertia matrix of spacecraft system. It can be 
obtained as follows:

Substitute the system dynamic equation Eq. 23 into Eq. 33 
as follows:

(26)V1 =
1

2
q̃Te q̃e

(27)V̇1 = q̃Te
̇̃qe = qTe ∙

1

2
∙ �

(
qe
)
�e

(28)
�e = −

(
2k1�

−1
(
qe
)
sig�1

(
q̃e
)
+2k2�

−1
(
qe
)
sig�2

(
q̃e
))

(29)

(30)

(31)V̇1≤ −k13
1−�1
2

(
3∑

i=1

q̃2ei

) �1+1

2

−k23
1−�2
2

(
3∑

i=1

q̃2ei

) �2+1

2

≤ −k13
1−�1
2 V1

�1+1

2 −k23
1−�2
2 V1

�2+1

2

(32)

(33)

Fig. 10.  Virtual prototype of the spacecraft with film capture pocket system.

Table 1. Controller parameters of the system

Parameter name Value

FNTSM parameters k1 = 10, k2 = 2, �1 =
11

5
, �2 =

11

19

FxESO parameters �1=4, �2=2, � 1= 15, �2=7.5, �= 15

o1=0.99, � 1= 1.01, �3=
11

5
, �4=

11

19

Initial attitude quaternion qt = 0
[
1 0 0 0

]T
desired attitude quaternion qd

[
0.9659 0.1494 0.1494 −0.1494

]T
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Equation 34 can be derived as follows:

where G is defined as the known state of the system and D is 
defined as the unknown state of the system. The function of G 
and D is written as follows:

We defined ẋ1 = J0Ṡ, x2 = D, ẋ2 = z, and Eq. 35 can be fur-
ther represented as follows:

The FxESO is designed as follows:

y1 and y2 are estimates of J0RSF and D, respectively. β1, β2, γ1, γ2, 
and η are the observation parameters, with η >  max {z}. 
ο1 ∈ (1 − κ, 1); ζ1 ∈ (1, 1 + κ); ο2 = 2ο1 − 1; ζ2 = 2ζ1 − 1; and κ 
is a sufficiently small value. The indicator function Γ is designed 
as follows:

The observation errors are designed as E1 = x1 − y1 and 
E2 = x2 − y2. Then, the dynamic functions of the observation 
errors can be written as follows:

It can be proved that there exist β1, β2, γ1, and γ2, such that 
the observation error E1 converges to 0 in the fixed time T1, 
and the observation error E2 converges to a small value χ within 
a fixed time t < T1 + T2. The expressions of T1 and T2 are writ-
ten as follows:

where H = HT and P = PT, such that QTH +HQ = −P and 

Q =

[
−�1I3×3 I3×3

−�2I3×3 0

]
.

Proof:
The Lyapunov function can be written as:

where, whent ≤ T , � =
[
sig

(
E1

)T
sig

1
�1
(
E2

)]
; when t > T , 

� =

[
sig

(
E1

)T
sig

1
o1
(
E2

)]
 ; and H is defined in Eq. 42. According 

to [23], it can be proved that:

where, Q and P are defined in Eq. 42. On the basis of [28], we 
obtain the following:

(34)

(35)J0RṠF = G +D + u

(36)

(37)

D= −
(
�e+A

(
qe
)
�d

)∗
ΔJ

(
�e+A

(
qe
)
�d

)
+ΔJ

(
�e

∗A
(
qe
)
�d−A

(
qe
)
�̇d

)
+d−ΔJ�e

(38)

{
ẋ1=G+x2+u

ẋ2= z(t)

(39)

(40)Γ =

{
0 , t≤T

1 else

(41)

(42)

⎧⎪⎨⎪⎩

T1≤ max{H}

min{P}

2

1−o1

�
�1−1

2

2min{P}

max{H}T

� 1−o1
1−�1

+T

T2≤ �

�−max{z}

(43)V2 = �
TH�

(44)
V̇2(1, �)= �̇TH �+ �TH �̇=ET

(
QTH+HQ

)
E

=ET(−P)E≤0

(45)
V2(1, �)= �TH�≤max{H}‖�2‖

V̇2(1, �)=ET(−P)E≤ −min{P}‖�2‖

Fig. 11. Size of the film capture pocket system.

Table 2. Dynamic parameters of the service spacecraft

Parameter name Service spacecraft

Mass (kg) 110

JR0x (kg·m2) 384

JR0y (kg·m2) 596

JR0z (kg·m2) 398

Table 3. Material properties of film surface and flexible rods

Parameter name Film surface Flexible rods

Density (kg/m3) 1430 164

Poisson ratio 0.3 0.3

Modulus of elasticity (MPa) 3.2 750
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Then, the Eq. 45 can be written as:

Moreover, according to [23], Eq. 46 can be written as:

When t = T, V2(ς1, ι)is satisfied as:

As ο1 ∈ (1 − κ, 1), V2(ς1, ι)is limited of V2(ο1, ι). Then, the 
observation error converges to 0 within fix time.

Design of the spacecraft control law
On the basis of the FNTSM and FxESO, the controller of the 
spacecraft is designed as follows:

where the parameters k3, k4, k5 > 0; α3 > 1; 0 < α4 < 1; SF is the 
FNTSM surface in Eq. 24; y2 are estimates of D in Eq. 39; and 
D and G are defined in Eqs. 36 and 37.

Proof:
Taking V3 =

1

2
ST
F
JR0SF as the Lyapunov function, the deriv-

ative of V3 is derived as follows:

We define E =
[
ET
1
ET
2

]T as the observation error matrix. 
Then, it can be proofed that:

The Eq. 50 can further derived as follows:

Therefore, it can be proved [27] that the controller achieves 
convergence and stability in fix time.

Results and Discussion

Cantilevered film simulation
In this section, a cantilevered film example is presented to 
demonstrate the performance of the ANCF shell element devel-
oped in this paper. The 2 corners at one end of the rectangular 
cantilever membrane are hinged and constrained, and the other 
end swings under gravity, as shown in Fig. 6. The length, width, 
and thickness of the plate are assumed to be 1.0, 1.0, and 0.005 m, 
respectively. The Young’s modulus and Poisson’s ratio are 

assumed to be 1.24 × 107 Pa and 0.3, respectively. The cantilevered 
film example is modeled and simulated using ANCF elements 
and S4 shell elements in ABAQUS, respectively.

As shown in Fig. 7, the curve of ANCF_elements10 * 10 is 
relatively close to the curve of ANCF_elements20 * 20. Therefore, 
the film only needs to be divided into 10 × 10 = 1000 ANCF 
elements to achieve convergence of mesh division. In addition, 
as shown in Fig. 8, the curve of ABAQUS_elements30 * 30 is 
relatively close to the curve of ABAQUS _elements50 *50, indi-
cating that 900 elements need to be divided to ensure the accu-
racy of the ABAQUS results. Because of the high degree of 
freedom of the ANCF element, the convergence of the element 
is much better than the shell element in ABAQUS. In addition, 
as shown in Fig. 9, the overall trend of the calculation results of 
ANCF element and ABAQUS shell element is consistent, which 
verified the correctness of the ANCF element.

Virtual prototype of the spacecraft with film capture 
pocket system
On the basis of the dynamics and controller theory, a virtual 
prototype of the service spacecraft with a film capture pocket 
system is established as shown in Fig. 10. The service spacecraft 
dynamic system mainly contains film surface dynamic model, 
flexible rod dynamic model, and spacecraft attitude dynamic 
model. The dynamic system simulates the attitude angle q, the 
deformation state of the large flexible parts, the interaction 
force between the film capture pocket and the spacecraft body, 
and other dynamic properties in real time. The attitude control 
system of the spacecraft system is mainly composed of FNTSM 
and FxESO. The simulation process of dynamics and control 
of the spacecraft with film capture pocket system is as follows: 
First, the attitude error quaternion qe is calculated on the basis 
of the motion state q of the dynamical system in real-time feed-
back. Second, the control system provides the FNTSM function 
and FxESO function respectively based on the attitude error 
qe. The controller u of the spacecraft system is calculated 
according to Eq. 49. Finally, the service spacecraft dynamic 
system calculates the system motion state q. Then, the closed-
loop simulation of the whole virtual prototype is completed.

Design of simulation parameters
The controller parameters are designed in Table 1.

The maximum diameter of the capture system is 4.12 m, and 
the maximum depth is 4 m. The diameter of each flexible rod 
is 0.1 m, the thickness of film surface is 3 mm, and the others 
are as shown in Fig. 11. The film capture pocket system is 
divided into ANCF elements mesh, as shown in Fig. 11.

The dynamic parameters of the service spacecraft are designed 
in Table 2.

The material properties of film surface and flexible rods are 
in Table 3.

Analysis of simulation results
On the basis of the virtual prototype, the attitude maneuver 
process of the system is simulated as shown in Fig. 12. As the 
spacecraft attitude stabilizes, the oscillation of the flexible rod 
decreases, and the overall system tends to stabilize. However, 
because of the low stiffness of the flexible rods, the flexible 
rod could not completely tension the film surface. The folds 
of the film persisted for a long time and could not be com-
pletely restored to a flat state. The spacecraft undergoes large 

(46)V̇2(1, �) ≤ −
max{H}

min{P}
V 2(1, �)

(47)V̇2≤
⎧⎪⎨⎪⎩

−
max{H}

min{P}
V

1+𝜁1
2

2

�
𝜍1, 𝜄

�
, t≤T

−
max{H}

min{P}
V

1+o1
2

2

�
o1, 𝜄

�
, t>T

(48)V2

(
�1, �

)≤
(
�1−1

2

min{P}

max{H}
T

) 2
1−�1

(49)u= −
(
k3sig

�3
(
SF

)
+k4sig

�4
(
SF

)
+k5SF +y2+G

)

(50)
V̇3=

1

2
STFJR0SF =

1

2
STF

(
−k3sig

�3
(
SF

)
−k4sig

�4
(
SF

)
−k5SF −y2+x2

)

(51)STF
(
− y2 + x2

) ≤ ||SF |||E|

(52)
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controller converges at about 35 s. The comparison of conver-
gence time shows that the FNTSM + FxESO controller sub-
stantially improves the convergence speed of the system attitude 
errors.

Figure 18 shows the FNTSM + FxESO torque input u curves. 
There is no obvious chattering for the control torque due to the 
compensation of the observer for the unknown disturbances 
in the system. During 0 to 10 s, the torque input is large because 
the attitude error of the system is large in the initial state. After 
10 s, the attitude tracking error of the system gradually con-
verges, and the control torque also decreases. However, because 
of the vibration of the flexible film capture pocket, there is also 
a slight vibration of the control torque. In addition, the control 
torque is not constant to 0.

Conclusion

1.  A new film capture pocket system is proposed in this paper 
to solve the space debris problems. The film structure effec-
tively avoids the structure self-tangling while also prevent-
ing the capture target from escaping.

2.  The film dynamic model is established on the basis of 
high-order ANCF theory. It was verified that the high- order 
ANCF element has better convergence than the ABAQUS 
shell element.

3.  A complex service spacecraft dynamic simulation system is 
developed. The simulation results show that the vibration 
of the flexible capture mechanism causes large nonlinear 
disturbances to the spacecraft.

4.  The FNTSM + FxESO controller is designed. The steady-
state attitude error of the spacecraft is 10−4 order of mag-
nitude. There is no obvious chattering of attitude torque 
input. The attitude error under the FNTSM + FxESO con-
trol law converges faster, compared with NTSM+ESO 
control law. These simulation results indicate the effective-
ness and stability of the controller.
Moreover, the research in this paper is limited to a simulation 

environment. There are maybe some foreseen challenges if the 
proposed control law is to be realized on a physical system, for 

example, sensor sampling frequency limitations, saturation of 
spacecraft actuator outputs, control system delays, etc. Subsequent 
studies will further refine the theoretical approach of this paper 
in conjunction with physical experiments.
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